

High Aspect Ratio Electron Beam, High Efficiency Interaction Structure, and High Power Amplifier Design*

Baruch Levush

Baruch.Levush@nrl.navy.mil

(202) 404 4513 off. (202) 384 2097 cell Naval Research Laboratory Washington, DC 20375

DARPA/MTO High frequency Integrated Vacuum Electronics (HiFIVE) Program

* Work sponsored by DARPA/MTO

High Aspect Ratio Electron Beam and

High Efficiency Interaction Structure

Upper MM-Wave Slow Wave Sources State-of-the-Art

Magnetic Focusing and Transport of Electron Beams – a Key Limiting Factor

From S. Humphries, "Charged Particle Beams"

Beam envelope equation:

$$R'' + k^2 R - \frac{K}{R} - \frac{\varepsilon^2}{R^3} = 0$$

Brillouin flow:

$$k^2 R - \frac{K}{R} = 0 \Rightarrow B_{Brillouin} = 262 \left(\frac{J^{1/2}}{V_b^{1/4}}\right)$$
 Gauss

$$K = \frac{2I}{(\beta \gamma)^3 (17.0kA)}$$
• J in A/cm²
• V_b in kV

$B_{transport} \sim 2.5 \times B_{Brillouin}$

Current Density in the Circuit (A/cm²)

Power vs. Frequency (f) Scaling for Round Beam Devices – Basic Issues

Fixed Upper Limit on Circuit Magnetic Field B_{max} due to Permanent Magnet Technology (~ 11 kG)

Practical Upper Limit on Beam Voltage Due to Systems Limitations (~ 20 kV)

Fixed Upper Limit on Current Density in the Circuit J_{max} (~1200 A/cm²)

Circuit Radius $\sim 1/f$

Beam Radius $\sim 1/f$

Beam Area $\sim 1/f^2$

Beam Current (I_b) ~ $J_{max}(1/f^2)$

Several Possible Scalings. For Example.....

Circuit not breakdown limited (fixed beam voltage V_b)

Beam Power (P_b) ~ $V_b I_b \sim V_c J_{max} (1/f^2)$

Output Power $\sim \eta P_b \sim (1/f^{0.5}) (1/f^2) \sim (1/f^{5/2})$

Circuit breakdown limited (beam voltage V_b scaling as 1/f)

Beam Power (P_b) $\sim V_b I_b \sim J_{max} (1/f^3)$

Output Power $\sim \eta P_b \sim (1/f^{0.5}) (1/f^3) \sim (1/f^{7/2})$

Interaction impedance limited

Output Power $\sim \eta RI_b^2 \sim (1/f^{0.5}) (1/f^4) \sim (1/f^{9/2})$

Scaling formulae for traveling wave devices and standing wave devices

Device

Traveling wave

Standing wave

Peak RF Power (W)

$$N \times 24 \left(\frac{1}{f}\right)^{8/3} (V_b)^{13/6} (J)^{4/3}$$

$$N \times 150 \left(\frac{1}{f}\right)^{13/4} (V_b)^{5/2} (J)^{3/2}$$

Peak Elect. Eff. (%)

14.4
$$\left(\frac{1}{f}\right)^{2/3} (V_b)^{1/6} (J)^{1/3}$$

$$48 \left(\frac{1}{f}\right)^{5/4} (V_b)^{1/2} (J)^{1/2}$$

CW RF Power (W)

$$N \times 2.4 \left(\frac{1}{f}\right)^{8/3} (V_b)^{13/6} (J)^{4/3}$$

$$N \times 15 \left(\frac{1}{f}\right)^{13/4} (V_b)^{5/2} (J)^{3/2}$$

Numeric values from state-of-the art anchor points, f in GHz, V_b in kV, and J in A/cm². N is the beam aspect ratio or number of beams.

Scaling at 220 GHz

More Scaling at 220 GHz

Projected 220 GHz Performance at V = 16 kV

Projected 220 GHz Performance at V = 20 kV

Multi-stage Depressed-Collector Technology for Efficiency Enhancement

Electronic Efficiency

$$\eta_{total} \approx \frac{\eta_{circuit}}{1 - \eta_{collector} (1 - \eta_{circuit})}$$

Multi-stage depressed collector State-of-the-art efficiency > 80%.

Component Design

 MICHELLE 3D and Maxwell 3D addressing the beam generation, propagation and collection

Beam formation

Beam transport

Beam energy recovery

Focusing Options with Permanent Magnets

Periodic Cusp Magnet (PCM) fields

- Very common focusing scheme for conventional tubes
- Challenges
 - Obtaining sufficient field
 - Transverse plane focusing
 - Small parts
 - Magnetization homogeneity
- Advantages
 - Stable transport for long distances

$$\left| 2\omega_p^2 \le \left(\frac{eB_0}{m} \right)^2 \right| << 16 \frac{e}{m} V \left(\frac{\pi}{L_M} \right)^2$$

Permanent Magnet (PM) axial (solenoidal) fields

- Used in some compact MMW tubes
- Challenges
 - Diocotron instability
- Advantages
 - Higher fields obtainable
 - Simple magnetic geometry

$$B[kG] > 0.32 \frac{I[A]}{V[kV]} \frac{L[cm]}{A_{beam}[cm^2]}$$

Condition for $L < L_{Diocotron}$

Sheet-Beam Transport in Solenoidal Field

Beam Compression Requirements

Round Beam – Compression is Two Dimensional

If radius is reduced by a factor of 10

Sheet Beam – Compression is Mainly One Dimensional

If height is reduced by a factor of 10-20

High Power Amplifier Design

 Perform theoretical analyses and simulations using physics-based modeling and simulation tools, such as MICHELLE, CHRISTINE and TESLA (NRL) and COTS software, such as:

MAXWELL and HFSS (http://www.ansoft.com/), MAGIC (http://www.magictoolsuite.com/), ANALYST (http://www.staarinc.com/), ANSYS (http://www.ansys.com/)

- Analyze beam-wave interaction in circuit

- > Power > Efficiency > Bandwidth
- Determine limitations and devise solutions to key problems
 - > Stability
- > Breakdown > Thermal

Design, fabricate, and cold test most promising structures to determine optimum configuration and fabrication techniques

Higher Order Modes in Sheet Beam Devices

- Sheet beam RF structures are inherently overmoded
 - Beam/circuit lateral size becomes large compared to RF wavelength
 - Many competing modes appear with similar resonant frequencies
- Need an understanding of mode competition

Mode competition is a universal problem for sheet beam RF amplifiers

Consider a simple waveguide:

TM mode cutoff frequencies are:

$$\frac{\omega_{m,n}^2}{c^2} = \left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2$$

$$m = 1,2,3...$$

$$n = 1,2,3...$$

When a \approx b $\omega_{1,1} << \omega_{1,2}$ (Distinct fundamental mode)

When a << b $\omega_{1,1} \approx \omega_{1,2} \approx \omega_{1,3} \approx \cdots$ (Many modes are almost degenerate)

Modes have different transverse structure:

$$E_z \propto \sin \frac{\pi x}{b}, \sin \frac{2\pi x}{b}, \sin \frac{3\pi x}{b}, \dots$$

Sources of Mode Competition

- Competing interactions:
 - Backward wave oscillation (BWO)
 - Stop-band oscillations
 - Both TM and TE modes interact

Stop-band arises due to mismatched slot coupling

Physical Processes Affecting Stability

Many processes provide feedback, potentially causing oscillation

- BWO oscillation occurs when the gain region exceeds a threshold length
- Stop-bands can significantly decrease this critical length